(+)-Episesaminone, a *Sesamum indicum* Furofuran Lignan. Isolation and Hemisynthesis

Patrice A. Marchand, Massuo J. Kato,[†] and Norman G. Lewis*

Institute of Biological Chemistry, 467 Clark Hall, Washington State University, Pullman, Washington 99164-6340

Received June 12, 1997[®]

Several lignans from *Sesamum* sp. contain an unusual oxygen insertion between their furano and aromatic rings. As part of our ongoing studies to clarify the biosynthetic pathway to the sesame lignans, the furanoketone, (+)-episesaminone, was isolated and fully characterized in part via hemisynthesis from (+)-sesamolin.

During our ongoing studies directed toward defining how (+)-sesamolin (1) biosynthesis occurs in Sesamum indicum L. (Pedaliaceae),¹ as well as that of related lignans,²⁻⁶ the hitherto unknown tetrahydrofuran lignan, (+)-episesaminone (2) (Figure 1), was isolated from commercially available unroasted and unbleached seeds, as well as from freshly harvested seed tissue. Its structure was established via a combination of ¹H-¹³C NMR, IR, UV, and MS analyses and confirmed by total synthesis as follows: the presence of a conjugated ketone in (+)-episesaminone (2) was suggested from its IR (1647 cm⁻¹) and UV (312 nm) absorbances and was further supported from the resonance at 197.3 ppm in its ¹³C-NMR spectrum, which revealed an aromatic conjugated carbonyl group, with the latter confirmed by use of a ¹H-¹³C 2D NMR HMBC experiment. The ¹H-NMR spectrum showed two aromatic o-carbonyl protons at 7.56 ppm (1H, dd, J = 8.1 Hz, J = 1.7 Hz) and 7.45 ppm (1H, d, J = 1.7 Hz). Additionally, the proton resonances at 7.56 and 7.45 ppm, together with those at 6.86 ppm (1H, d, J = 8.1 Hz) and two methylenedioxy protons downfield at 6.05 ppm, were indicative of a 3,4methylenedioxyphenyl (piperonyl) acetophenone system. This was additionally supported by its mass spectrum, which exhibited a base peak at m/z 149 and a fragment ion at m/z 121, corresponding to acylium ion [ArCO⁺] and piperonyl ion [Ar⁺] fragments, generated after carbon-carbon bond cleavage at C-7'/C-8' and C-7'/C-1', respectively.⁷ In an analogous manner, the second piperonyl system was established by the proton resonances at 6.95, 6.84, 6.76 (aromatic protons), and 5.94 ppm (OC H_2 O). This was further confirmed from its ¹³C-NMR spectrum, using both DEPT and HMBC, to determine the multiplicities and ${}^{3}J$ coupling relationships. That is, the methylenedioxy bridges at 5.94 and 6.05 ppm in the ¹H-NMR spectrum were correlated with the two OCH₂O groups at 101.13 and 102.01 ppm, respectively, thereby confirming the piperonyl structure for both aromatic substituents in the ¹³C-¹H HETCOR NMR spectrum. The remaining assignments were made using a combination of ¹H, ¹H-¹H COSY, ¹³C (DEPT mode), and ¹³C-¹H HETCOR NMR spectroscopic analyses, which established the tetrahydrofuran skeleton as follows: the doublet at 4.64 ppm (J = 9.1 Hz)

Figure 1. Lignans from Sesamum indicum.

was assigned to the oxybenzylic proton H-7 in a trans configuration to H-8. Next, the multiplets centered at 4.28 and 4.10 ppm were correlated in the ¹H-¹H COSY NMR spectrum and assigned to the three proton resonances, viz. the protons of the methylene group at C-9' and the methine proton at C-8'. In the same way, the multiplets at 3.76-3.66 and 2.86 ppm were correlated in the 2D ¹H-¹H spectrum and assigned to the hydroxymethyl group at C-9 and the methine proton at C-8. Furthermore, 2D ¹³C-¹H HETCOR NMR spectroscopic studies confirmed the furanoketone structure by assignment of chemical shifts in the ¹³C-NMR spectrum relative to the corresponding ¹H-NMR resonances (see Experimental Section), in a manner analogous to that used for other naturally occurring keto-lignans.^{8,9} Thus, the methylenic multiplets at 4.28-4.10 ppm and 3.76-3.66 ppm displayed correlations with the methylenic carbon at 70.84 (C-9') and the CH₂OH group at 61.29 ppm (C-9), respectively, as did the multiplets at 4.18 and 2.86 ppm with the methine carbons at 49.98 ppm (C-8') and 52.26 ppm (C-8) in the DEPT ¹³C-NMR spectrum. Additionally, the H-7 proton at 4.64 ppm was correlated with the methine carbon (C-7) at 83.70 ppm, thereby accounting for all of the resonances of the tetrahydrofuran skeleton. Further support for this structural determination was made by MS analysis, which displayed a molecular ion at m/z 370, together with fragment ions at m/z 203, 149, and 121 corresponding to $[ArC_5H_6O^+]$, $[ArCO^+]$, and $[Ar^+]$, respectivelv.7

Next, nuclear Overhauser enhancement difference experiments established a cis stereochemistry between the H-8 and H-8' protons on the bridgehead carbons. Furthermore, since no NOE was observed between the H-7 and H-8 protons, these therefore had a trans stereochemical relationship between them. Thus, (+)episesaminone (2) has the same overall stereochemistry as that of magnolenin C (3) from Magnolia grandiflora¹⁰ (Figure 2). The absolute configuration of 2 at C-8' was

^{*} To whom correspondence should be addressed. Phone: 509-335-2682. FAX: 509-335-7643. E-mail: lewisn@wsu.edu. [†] Present address: Instituto de Quimica, Universidade de São Paulo,

^{26077, 05599-970} São Paulo SP, Brazil. [®] Abstract published in *Advance ACS Abstracts*, November 1, 1997.

Figure 2. Lignan metabolites isolated from *Magnolia grandiflora* and *Sesamum indicum*, as well as from *Streptomyces* cell cultures grown on sesame-seed media.

Figure 3. Dimer 6 obtained by acid hydrolysis of sesamolin 1.

deduced as $R([\alpha]_D + 126.2^\circ; c \ 0.127, CHCl_3)$, given that the previously reported S epimer,¹¹ (–)-sesaminone (**4**) had a negative optical rotation ($[\alpha]_D - 25.0^\circ; c \ 0.14$, MeOH).

To establish unambigously the proposed structure of (+)-episesaminone (2), its hemisynthesis from (+)-sesamolin (1),¹² a readily available sesame-seed lignan together with (+)-sesamin (5),¹³ was next developed. The approach used was based on the known chemistry of (+)-sesamolin (1), which can be hydrolyzed in H_2SO_4 – EtOH to give, as the major products, the dimer **6** (Figure 3) and lactol (+)-samin (7).¹⁴ Subsequent modification of this hydrolytic procedure with **1** in acetate buffer (165 mM, pH 1.0) in EtOH gave three compounds: the symmetrical dimer **6** (disaminyl ether) as the major product, as well as smaller yields (10–20%) of the required (+)-samin (7) and its corresponding ethoxy-ether.¹⁵

Further refinement of the hydrolytic procedure, however, using DOWEX-50 X 2–200 exchange resin, NaOAc buffer (165 mM, pH 1.0), and 10% HCl in CH_3CN gave 7 in 65% yield (Scheme 1).

From lactol 7, the key step to afford (+)-episesaminone (2) was a mono-Grignard addition to lactone 8 as

shown in Scheme 1. Thus, oxidation of (+)-samin 7 with pyridinium dichromate (PDC) under acidic conditions^{1,16} afforded the corresponding lactone, (+)-acuminatolide **8**^{1,17} in 78% yield. Subsequent condensation of **8** with the Grignard reagent,¹⁸ obtained from bromosesamol (1bromo-3,4-(methylenedioxy)benzene), at room temperature, followed by hydrolysis of the intermediate lactol **9**, gave (+)-episesaminone (**2**) as shown (Scheme 1). The synthetic product was identical in all respects to naturally occurring (+)-episesaminone (2) (see Experimental Section), except for the optical rotation value, i.e., $[\alpha]_D$ $+120^{\circ}$ (c 0.127, CHCl₃) versus that of the natural product **2** $[[\alpha]_D + 126.2^\circ (c \ 0.127, CHCl_3)]$. Thus, since (+)-samin 7 has a R configuration at C-8',^{1,14} this confirms the proposed stereochemical assignment of (+)episesaminone (2).

Last, in terms of the biosynthesis of (+)-episesaminone (2), it can tentatively be proposed that it is formed in vivo from (+)-sesamin (5) (Figure 2). Given that (+)episesaminone (2) can exist in its lactol form (see Figure 1) under basic conditions, ¹⁰ only a single oxidation step from (+)-sesamin 5 to 2 is required. Additionally, it should be noted that its C-8' *S* epimer, (-)-sesaminone (4) (Figure 2) has been reported as present in *Streptomyces* IT-44 cell cultures grown on sesame-seed media.¹¹ A possible explanation for its formation is that cis (+)episesaminone (2) is epimerized at C-8' under prolonged basic treatment to give the more stable trans form 4.

Experimental Section

Plant Materials. Seeds of *S. indicum* (unroasted and unbleached) were either purchased from a local produce store or obtained from ripe pods of mature *S. indicum* plants grown in greenhouses at Washington State University.

General Experimental Procedure. Solvents were either HPLC grade (CH₃CN, MeOH, AcOH, CH₂Cl₂, THF) or ACS grade (EtOAc, Hexanes) from Baker. Tetrahydrofuran (THF) and methylene chloride (CH₂-Cl₂) were distilled over LiAlH₄-triphenylmethane and CaH₂, respectively. Column and analytical TLC separations (Al Si G/UV 254) were performed using Si gel 60 (230-400 mesh) (Whatman). IR spectra were recorded on a Perkin-Elmer 1720-X FTIR spectrometer, whereas NMR spectra were obtained using either Bruker AMX300 (for ¹H, ¹³C, and 2D NMR) or Varian 500VXR (for NOE measurements) spectrometers. All spectra were recorded in CDCl₃ using TMS as internal reference, with chemical shifts (δ) expressed in parts per million and coupling constants (J) in Hertz. UV and ORD spectra were recorded on a Perkin-Elmer Lambda 6 UV/vis spectrophotometer and a JASCO 181 polarimeter at λ 289 nm (Na), respectively. HPLC separations were carried out in the reversed-phase mode [Waters C_{18} Nova-Pak, 150 \times 3.9 mm i.d., 4 μ m], eluted with MeOH-H₂O in a linear gradient of $3:7 \rightarrow 7:3$ over 60 min with detection at 280 nm. EIMS analyses were carried out with an HPLC-MS (Integrity Waters), using a reversed-phase column (Waters C_{18} Nova-Pak, 150 \times 2 mm i.d., 4 μ m) eluted with a linear solvent gradient A: H₂O (3% v/v acetic acid) and B: CH₃CN; as follows: $8:2 \rightarrow 7:3$ in 10 min, then $7:3 \rightarrow 1:1$ in 25 min; MS analyses TIC (Total Intensity Chromatogram) were performed from m/z 80 to 700 at a rate of 1 scan s⁻¹, with an optimal temperature of the nebulizer at 80 °C

using (+)-sesamin (5) as a reference. Interpretation of fragmentation patterns were calculated where Ar = 3,4-methylenedioxyphenyl.⁷ HRMS analyses employed a VG 7070 EHF mass spectrometer at 70 eV.

Isolation of (+)-Episesaminone (2). Commercially available S. indicum seeds (1.28 kg, unroasted) were homogenized in a Waring blender containing MeOH (1 L) and extracted exhaustively with hot MeOH (11 \times 1 L) at 50 °C. The resulting MeOH solubles (12 L) were combined, cooled to 0 °C for 45 min, then filtered with the filtrate concentrated in vacuo to give an oily residue. This residue was suspended in MeOH-H₂O (1:1, 150 mL), then sequentially extracted with hexanes (2 \times 400 mL) and EtOAc (4 \times 500 mL). The EtOAc solubles were combined and concentrated (15 mL), to which MeOH (150 mL) was next added. The resulting precipitate (3.24 g) was removed by filtration to give a crude mixture of (+)-sesamin (5) and (+)-sesamolin (1),^{9,19} with the filtrate concentrated to afford a yellow gum (12.3 g). The latter was dissolved in a minimal amount of EtOAc and applied to a Si gel column (300 g) eluted with a hexane-EtOAc gradient (5:1 to 1:1; 150 mL each). Fractions 6-7 (25 mL each) and 8-9 contained (+)-sesamin (5) (536 mg)¹³ and (+)-sesamolin (1) (279 mg),⁹ respectively. Fractions 13-15 were evaporated to dryness, reconstituted in CHCl₃, then subjected to preparative TLC eluted with 3% (v/v) MeOH in CHCl₃ to give (+)-episesamin (2 mg) (C-7' epimer of 5),⁷ (+)kobusin (1.5 mg),²⁰ and a more polar fraction. The latter was subjected to analytical HPLC separation [C18 reversed-phase, eluted with MeOH-H₂O, linear gradient 3:7 \rightarrow 7:3 in 60 min] to give (+)-piperitol (2 mg)²¹ and (+)-sesamolinol (1 mg).²² Fractions 17-20 (58 mg) were pooled and purified by preparative TLC (CHCl3-MeOH 5:1) to give two fractions, purification of which by analytical HPLC as before gave (+)-sesamolinol (1.5 $mg)^{22}$ and (+)-episesaminone (2) (1 mg), respectively. Fractions 21-24 (88 mg) were chromatographed on Si gel eluted with 5% (v/v) MeOH in CHCl₃ to afford (+)pinoresinol (23 mg)²³ and *trans*-ferulic acid (7 mg).

(+)-Episesaminone (2). (+)- $[3R-(3\alpha, 4\alpha, 5\beta)]-1,3-$ Benzodioxol-5-yl[1-(1,3-benzodioxol-5-yl)-2-(hydroxymethyl)tetrahydro-1H,3H-3-furanyl]methanone: IR (CHCl₃) v_{max} 3600-3200 (OH), 1647 (C=O), 1604, 1505, 1444, 1409 (C=C Ar), 1251 (C-O) cm⁻¹; UV (MeOH) λ_{max} (log ϵ) 230 (4.76), 280 (3.75), 312 (2.87) nm; [α]_D +126.2° (c 0.127, CHCl₃); MS m/z 370 [M⁺] (38), 352 $[M - H_2O^+]$ (5), 243 (5), 203 $[ArC_5H_6O^+]$ (25), 194 (40), 176 (48), 152 (50), 150 [ArCHO⁺] (45), 149 [ArCO⁺] (100), 121 [Ar⁺] (40); HRMS *m*/*z* 370.1044 (calcd for $C_{20}H_{18}O_7$, 370.1053); ¹H-NMR δ 7.56 (1H, dd, J = 8.1Hz, J = 1.7 Hz, H-6'), 7.45 (1H, d, J = 1.7 Hz, H-2'); 6.95 (1H, d, J = 1.65 Hz, H-2), 6.86 (1H, d, J = 8.1 Hz, H-5'), 6.84 (1H, dd, J = 7.94 Hz, J = 1.65 Hz, H-6), 6.76 (1H, d, J = 7.94 Hz, H-5), 6.05 (2H, s, OCH₂-O), 5.94 $(2H, s, OCH_2-O), 4.64 (1H, d, J = 9.1 Hz, H-7), 4.28$ (1H, m, H-9'eq), 4.10 (2H, m, H-9'ax + H-8'), 3.76 (1H, m) and 3.66 (1H, m, H-9), 2.86 (1H, m, H-8); ¹³C-NMR (DEPT mode) δ 197.30 (s, C-7'), 152.18 (s, C-4'), 148.44 (s, C-3'), 147.98 (s, C-4), 147.45 (s, C-3), 134.42 (s, C-1), 131.14 (s, C-1'), 124.93 (d, C-6'), 119.08 (d, C-6), 108.30 (d, C-5), 108.09 (d, C-2'), 107.93 (d, C-5'), 107.14 (d, C-2), 102.01 (t, OCH₂O), 101.13 (t, OCH₂O), 83.70 (d, C-7), 70.84 (t, C-9'), 61.29 (t, C-9), 52.26 (d, C-8), 49.98 (d, C-8') ppm.

Ripe Pod Extraction. Mature (9–12 weeks' growth) S. indicum greenhouse grown plants were harvested, with the intact seeds (50 g) carefully removed, and immediately homogenized in a Waring blender containing MeOH (200 mL) and then extracted with hot MeOH (50 °C, 3×200 mL). The resulting MeOH extracts (800 mL) were combined, filtered under reduced pressure over a short path of sea sand, and the filtrate evaporated to dryness in vacuo. The resulting residue was subjected to column chromatography on Si gel (60 g) using hexane-EtOAc 3:1 as solvent to give (+)-sesamolin (1) (20 mg) and (+)-sesamin (5) (10 mg).⁹ Further elution with hexane-EtOAc 1:1 gave two fractions; HPLC-MS of the latter fraction gave a single component at the same retention time as 2 with identical UV and MS spectra to those of the synthetic (+)-episesaminone (2).

Hydrolysis of **1** to give the known (+)-samin **7**,¹³ subsequent conversion to (+)-acuminatolide (**8**), and complete physical and spectroscopic data of **7** and **8** are described elsewhere.¹

Dimer 6: IR (CHCl₃) ν_{max} 1503, 1443 (C=CAr), 1248 (C-O) cm⁻¹; UV (CHCl₃) λ_{max} (log ϵ) 243 (3.8), 288 (3.9), 337 (1.32) nm; mp 188–189 °C (MeOH), (lit.¹⁴ 191–192 °C); $[\alpha]_{\rm D}$ +160.1° (c 1.37, CHCl₃) (lit.¹⁴ $[\alpha]_{\rm D}$ +143° (c 1.74, CHCl₃)); MS *m*/*z* 482 [M⁺] (5), 233 [C₁₃H₁₃O₄⁺] (10), 203 [ArC₅H₆O⁺] (15), 189 (5), 163 (10), 150 [ArCHO⁺] (95), 149 [ArCO⁺] (100), 135 [ArCH₂⁺] (90), 121 [Ar⁺] (20); HRMS 482.1581 (calcd for C₂₆H₂₆O₉, 482.1517); ¹H-NMR δ 6.90–6.75 (m, 6H, H-2, H-5 and H-6), 5.96 (s, 4H, OCH₂O), 5.29 (s, 2H, H-7'), 4.37 (d, J = 8.4 Hz, 2H, H-7), 4.38 (dd, J = 9.2 Hz, J = 7.8 Hz, 2H) and 4.05-3.95 (m, 4H) and 3.58 (dd, J = 9.2 Hz, J = 7.8 Hz, 2H, H-9 and H-9'), 3.05-2.95 (m, 2H, H-8'), 2.90-2.85 (m, 2H, H-8); ¹³C-NMR (DEPT mode) δ 148.06 (s, C-3), 147.39 (s, C-4), 134.63 (d, C-1), 119.78 (d, C-6), 108.25 (d, C-5), 106.65 (d, C-2), 102.96 (d, C-7'), 101.17 (t, OCH2O), 87.06 (d, C-7), 71.44 (t, C-9), 69.43 (t, C-9'), 52.84, 52.77 (d, C-8 and C-8') ppm.

Synthesis of (+)-Episesaminone (2). A suspension of magnesium turnings (5.2 mg, 1.2 equiv) and 1-bromo-3,4-(methylenedioxy)benzene (1.1 equiv, 23.5 mL) in dry THF (5 mL) was heated under argon until reflux began, this being maintained for 3 h. The resulting suspension was cooled to room temperature and added dropwise to a solution of 8 (44 mg, 0.177 mmol) in dry THF (50 mL). After being stirred for 12 h, the solvent was removed in vacuo, with the resulting residue subjected to column chromatography (hexane-EtOAc, 3:1 then 1:1) to give 2 (18.4 mg, yield 29%, conversion 47% based on starting material) and unreacted starting material 8 (18 mg). The [α]_D (120°; *c* 0.127, CHCl₃), MS, HRMS, ¹H and ¹³C NMR, IR, and UV spectra were identical with naturally occurring (+)-episesaminone (2) except for the optical rotation value, i.e., $[\alpha]_D$ +120° (*c* 0.127, CHCl₃) versus that of the natural product **2** { $[\alpha]_D$ +126.2° (*c* 0.127, CHCl₃) see above }.

Acknowledgment. The authors wish to thank the National Science Foundation (MCB-9219586), and the Arthur M. and Kate Eisig-Tode Foundation (to P.A.M.) for generous support of this study, as well as to FAPESP (M.J.K.) for providing a travel grant, Dr. W. F. Siems (Department of Chemistry, Washington State University) for high resolution mass spectra and Dr. J. Zajicek for helpful discussions.

References and Notes

- (1) Marchand, P. A.; Zajicek, J., Lewis, N. G. Can. J. Chem. 1997, 75, 840-849.
- Davin, L. B.; Wang, H.-B.; Crowell, A. L.; Bedgar, D. L.; Martin, D. M.; Sarkanen S.; Lewis. N. G. *Science* **1997**, *275*, 362–366.
 Dinkova-Kostova, A. T.; Gang, D. R.; Davin, L. B.; Bedgar, D.
- L.; Chu, A.; Lewis, N. G. J. Biol. Chem. 1996, 271, 29473–29482.
- (4) Chu, A.; Dinkova, A.; Davin, L. B.; Bedgar D. L.; Lewis. N. G. J. Biol. Chem. 1993, 268, 27026–27033.
- (5) Gang, D. R.; Dinkova-Kostova, A. T.; Davin, L. B.; Lewis, N. G. ACS Symp. Ser. 1997, 658, 58-89.
- (6) Davin, L. B.; Lewis, N. G. ACS Symp. Ser. 1994, 562, 202-246. (7) Pelter, A.; Ward, S.; Rao, E. V.; Sastry, K. V. Tetrahedron 1976, 32, 2783-2788.
- (8) Kinjo, J.; Higuchi, H.; Fukui, K.; Nohara, T. Chem. Pharm. Bull. 1991, *39*, 2952–2955.
- Banerji, A.; Sarkar, M.; Ghosal, T.; Pal, S. C.; Shoolery, J. N. (b) Danis J., H., Sutar, M., Solardon, Y. at, S. C., Shoter J., S. T. Tarhedron **1984**, 40, 5047–5052.
 (10) Rao, K. V.; Wu, W.–N. *Lloydia* **1978**, 41, 56–62.
 (11) Chiung, Y.–M.; Hayashi, H.; Matsumoto, H.; Otani, T.; Yoshida,
- K.-I.; Huang, M.-Y.; Chen, R.-X.; Liu, J.-R.; Nakayama, M. *J. Antibiot* 1994, *47*, 487–491.
 Takano, S.; Ohkawa, T.; Tamori, S.; Satoh, S.; Ogasawara, K.
- J. Chem. Soc., Chem. Commun. 1988, 189–191.

- (13) Davenport, J. B.; Sutherland, M. D. Aust. J. Chem. 1954, 7, 384-386.
- (14) Haslam, E.; Haworth, R. D. J. Chem. Soc. 1955, 827-833.
- (15) Fukuda, Y.; Isobe, M.; Nagata, M.; Osawa, T.; Namiki, M. Heterocycles 1986, 24, 923-926.
- (16) Corey, E. J.; Su, W.-G. J. Am. Chem. Soc. 1987, 109, 7534-7536.
- (17) Jakupovic, J.; Pathak, V. P.; Bohlmann, F.; King, R. M.; Robinson, H. Phytochemistry 1987, 26, 803-807.
- (18) Ishibashi, H.; Su So, T.; Okochi, K.; Sato, T.; Nakamura, N.; Nakatani, H.; Ikeda, M. J. Org. Chem. 1991, 56, 95-102.
- (19) Adriani, W. Z. Unters. Lebensmittel 1928, 56, 187-194.
- (20) Iida, T.; Nakano, M.; Ito, K. Phytochemistry 1982, 21, 673-675.
- (21) Brieskorn, C. H.; Huber, H. Tetrahedron Lett. 1976, 26, 2221-2224.
- (22) Osawa, T.; Nagata, M.; Namiki, M.; Fukuda, Y. Agric. Biol. Chem. 1985, 49, 3351-3352.
- (23) Fonseca, S. F.; Nielsen, L. T.; Ruveda, E. A. Phytochemistry 1979, 18. 1703-1708.

NP9702953